[sW]| HIR[147] C|

HIRDLS
HIGH RESOLUTION DYNAMICS LIMB SOUNDER

Originators: J.J. Bamett, A. G. Darbyshire, R.J.Wells Date: 01 DEC 21

Subject/title: SAIL REQUIREMENTS DOCUMENT

Description/summary/contents:
Requirements document for Science Algorithm Implementation Language (SAIL)

1. Introduction
1.1 Purpose and objective

2. Related Documentation

)
2
7
LMSSC
MSO
RELEASE
CONTROLLED

3. Description of System
3.1 Instrument control philosophy

4. SAIL Requirements

4.1 SAIL Functionality

4.2 SAIL Language

4.3 SAIL executive and task control
4.4 SAIL memory requirements

4.5 SAIL command and data interface
5.0 Requirements Traceability Matrix

Q
37
Q)
N,
S
&Y
(NS

6. List of Acronyms

Key words: Control, Language, Software, Requirements

Purpose of this document: Project Use

Reviewed/approved by:
Date (yy MMM dd):
OXFORD UNIVERSITY LOCKHEED MARTIN MISSILES & SPACE
Atmospheric, Oceanic and Planetary Physics Advanced Technology Center
Department of Physics 3251 Hanover Street
Parks Road Palo Alto, California 94304-1191
OXFORD OX1 3PU United States of America EOS
United Kingdom.

LMA L Lockheed Martin

23-APR-1998
Revision B

a)
b)
c)

a)

26-MAY-1999

Revision B
a)
b)
c)

16 OCT 2001
Revision C

SW-HIR-147C

CHANGE SHEET

Incorporate changes requested at the HIRDLS Flight Software
Meeting, Oxford, March 30th - April 3rd, 1998. (MV-LOC-309).
(SAIL control of TBD functions)
change to "write to housekeeping'*

Delete requirement 4.1.2
4.1.3
4.2.11.2

change

*overflow" to ‘tdiwvide—by—seret”errcr”’

change definition of modulo operator
4.3.3 change "engineering" to "housekeeping"

Clarify requirement for the background task (Task 15)
Add 4.2.15
4.3.2 Change "up to 15"
4.3.3 Delete "non-background' and "and any background*.

to

*all". Delete 2nd sentence.

Update Requirements for Acceptance Testing

a} 4.1.8 Delete reguirement

h) 4.2.3 Add sentence that ground software can be written in C++

c) 4.2.15 Change “miliseconds” to chopper rotations

) 4.3.4 Delete “{TBD kilocbvtes)”. Size is not predetermined.

e} Add exception for HIR_SAI_SETPARAM command.

f} 4.4.3 Change “startup” to “creation”

g) 4.5.4 Delete Regquirement. Implemented in IPU scftware.

h) 5.0 Update Requirements Traceability Matrix to reflect
changes .

i) Added SAIL requirements Ids to facilitate tracking to the SAIL SW

trace VCRM.
Added SQE to signature page.

3)

it

SW-HIR-147C

SW-HIR-147

Science Algorithm Implementation Language (SAIL) Requirements Document

Approved by:

/s/ John Whitney, HIRDLS Program System Engineer Date
/s/ Raymond von Savoye, HIRDLS Instrument System Engineer Date
/s/ John Barnett, HIRDLS Principle Investigator Date
/s/ Jerry Drake, Flight Software Manager Date
/s/ Jim McGill, Software Quality Engineer Date

iii

SW-HIR-147C

Science Algorithm Implementation Language (SAIL) Requirements Document

1. Introduction.
1.1 Purpose and Objective.

The purpose of this document is to define the requirements for that portion of
the flight software resident in the Instrument Processor Subsystem (IPS) in the
High Resolution Dynamics Limb Sounder (HIRDLS) experiment which will allow the
instrument to be flexibly controlled through a high order language for the
purpose of routine scientific observation and for the possibility of adapting
the science operations on orbit to degradation in the instrument or to
changing scientific observational demands. This language will be used for
instrument control in four phases of the project:

a) 1Instrument Integration and Test (I&T)
b) Pre-launch calibration

c) Spacecraft Integration and Test (I&T)
d) Post-launch

The objective of this document is to provide sufficient guidance that when
coupled with the information contained in the Command and Telemetry Handbook,
the subsystem ICDs, and the SAIL documentation set, a flexible, safe and
reliable method of control for the HIRDLS experiment may be produced.

2. Related Documentation.

Instrument Technical Specification (ITS) : SP-HIR-13N
Command and Telemetry Document : SP-HIR-103
Instrument Requirements Document : SC-HIR-18K

Science Requirements Document : SC-HIR-12A

3. Description of System.

Primary control of the HIRDLS instrument is through the Instrument Processor
Subsystem (IPS). The Instrument Processor Unit (IPU) provides the command
and telemetry interface between the instrument and the spacecraft, prepares
the telemetry data, provides control over the remainder of the HIRDLS
subsystems (Telescope Subsystem [TSS], Gyro Subsystem [GSS], Power Subsystem
[PSS], Cooler Subsystem [CSS], In-Flight Calibration Subsystem [IFC],
Operational Heater Control and Sunshield Door Control) and provides the
initialization of the system on boot-up. The Signal Processing Unit [SPU],
performs the Detector Control and Data Processing function.

To permit flexible, safe and reliable control of instrument functions, a
software system (SAIL) is implemented in the IPU which permits the instrument
to be controlled by high level language commands generated remotely.

3.1 Instrument control philosophy.

On-orbit scientific operations of the experiment requires maximal flexibility

SW-HIR-147C

in commanding the instrument on the one hand but also requires a highly
reliable (safe) method of control which is not overly complex or time consuming
to utilize. Control of scientific instruments has evolved from those with all
functionality hardwired and selectable through a relatively small number of
commands. This approach is highly reliable but very limited. If an
implementation error is discovered after launch, a failure or degradation
occurs or the objectives of the scientific observations change due to newly
discovered knowledge in the field, very little or nothing can be done to adapt
the instrument to the changed circumstances. Examples of such instruments are
the Lockheed Hot Plasma Composition Explorer (HPCE) instrument on Dynamics
Explorer 1 and the Active Magnetospheric Particle Tracers Experiment (AMPTE) on
the Charge Composition Explorer (CCE) spacecraft.

The next stage of evolution was to table driven operations where many
parameters related to the observation could be set through uploaded binary
tables. An example of this approach is the Toroidal Imaging Mass-Angle
Spectrograph (TIMAS) instrument on the Polar spacecraft of the Global Geospace
Science (GGS) Mission. In this instrument, primary control is through an
Instrument Control Parameter (ICP) table prescribing the priority of 23 data
products for each of 32 spins of 6 seconds each. The data products themselves
also contain several internal control parameters such as the number of spins
over which to sum. This approach is more flexible but still limited to the
choices available. It is also more complex making the generation and checking
of the binary loads moderately difficult.

The next extension would be to allow as complete and flexible control of the
instrument as possible through a high level language (to decrease the degree
of difficulty to implement new control sequences) allowing conditional control
and looping with access to the telemetry stream for decision making in the
control expressions. If all commands except those which are hazardous to the
instrument or those which are time critical to the fundamental operation of the
instrument were allowed, this would be the fullest control extension possible.
This approach was successfully implemented on the ISAMS instrument, where the
high level PCL language was used to control the instrument throughout ground
testing, and in orbit. The flexibility of control permitted by the PCL was
essential to permit modifying instrument operation, to carry out a range of
normal scientific observations, and to cope with unexpected instrument and
spacecraft behaviour.

The same approach is to be used for HIRDLS. Requirement details for the
language follow in this document. The command sequences generated in this
language must be verified on the ground prior to upload by the responsible
mission operations personnel at that time. This will ensure that the
sequence(s) perform the operations as expected and that there are no unexpected
error conditions or states which this sequence will elicit from the instrument.
This verification is done by use of a software simulator. A Flight Software
Simulator (FSS) will be produced by LMPARL and be provided to Oxford University
who will add further modules for science verification. This augmented FSS will
be used to verify the command sequences prior to upload. The augmented FSS
itself will be verified against both the HIRDLS Engineering Model and against
the Flight Model through a series of appropriately defined tests (command
sequences) .

SW-HIR-147C

4. SAIL Requirements

The Science Algorithm Implementation Language permits the flexible control of
the instrument from a simple high-level language in a fashion which was proven
by the ISAMS experiment to be safe and highly flexible.

The high-level language is processed on the ground into a sequence of SAIL
interpreter instructions, which are uploaded to the instrument and executed
under the control of the SAIL executive. The executive itself receives
commands from the spacecraft; these commands can be generated either on the
ground or from the spacecraft on-board computer as appropriate.

This section presents top-level requirements for the SAIL, in other words, the
requirements on the functionality which the SAIL system must present to the
user. The details of the implementation of the SAIL which will meet these
requirements are given in the SAIL specification document.

A source is indicated for each requirement. ITS refers to the Instrument
Technical Specification (SP-HIR-13N); EJ refers to Engineering Judgement,
derived in large part from experience with the ISAMS PCL system and discussion
meetings held in Oxford in January and September 1996.

4.1 SAIL functionality.

4.1.1 Instructions must be available in the SAIL able to control all
mechanisms and issue any instrument commands, except for control of
time-critical functions {SAIL010)}. However, protection must be provided for a
subset of commands to prevent their being issued from SAIL. The potential to
override the protection by ground command must also be provided {SAIL020}.
[ITS 4.7.3.2.12.3]

4.1.2 [Deleted]

4.1.3 The SAIL must be able to write to the housekeeping data stream
{SAILO50}.
(ITS 4.7.3.2.12.3]

4.1.4 There must be the ability to write to any diagnostic ports provided
in the IPU hardware system {SAIL060}.
[ITS 4.7.3.2.12.3]

4.1.5 The SAIL must be able to read from all data buffers {SAIL070}.
[ITS 4.7.3.2.12.2]

4.1.6 The SAIL must have access to all relevant telemetry sampling timing
information {SAIL080}, as well as access to the real time updates received from
the spacecraft interface {SAIL0SO}.

[ITS 4.7.3.2.12.3, ITS 4.7.3.2.12.5]

4.1.7 The SAIL must have mnemonic access to all telemetry input and commands
to the IPS including equator crossing/oblateness commands_{SAIL100}.

[ITS 4.7.3.2.12.3]

SW-HIR-147C

4.1.8 The SATL-must—have : regecess—teo—the status—of—th SRR EL

+EES—4—FE At d—3}Deleted
4.2 SAIL language.

It is essential that the SAIL presents to users a simple, high-level language
type interface. The following requirements apply to this language interface.

4.2.1 The language must not be more complex than the minimum needed to meet
the requirements described in this document. The preference is to write extra
lines of code rather than have an overly complex language with consequent
difficulty in testing {SAIL120}.

{ITS 4.7.1.1]

4.2.2 The SAIL language must permit extensive commenting of the source code
{SAIL130}.
[ET]

4.2.3 The SAIL language assembler and compiler must be written in ANSI
standard C (or Fortran). (Non-flight code may be written in C++ per Deviation
D016, GSFC 424-12-21-033.)

[ITS 3.10.1]

4.2.4 The SAIL language compiler must not employ any optimization techniques
{SAIL150}.
[EJ]

4.2.5 All telemetry mnemonics in the compiler/assembler must be redefinable
through a symbol table {SAIL160}.
[ITS 4.7.4)]

4.2.6 The SAIL must be a strongly typed language; all variables, functions
and function arguments must be declared before use_ (SAIL170}.
[EJ]

4.2.7 SAIL must not permit dynamic memory allocation._ {SAIL180}
[EJ]

4.2.8 SAIL language statements must not permit multiple assignments in a
single statement {SAIL190}.

[EJ]

4.2.9 Data types.

The data types in 4.2.9.1 to 4.2.9.6 inclusive must be provided.

4.2.9.1 Byte: unsigned 8 bits [0,255]_ {SAIL200}.
[ITS 4.7.3.2.12.3, EJ]

4.2.9.2 Unsigned: unsigned 16 bits [0,65535] {SAIL210}.
{ITs 4.7.3.2.12.3, EJ]

4.2.9.3 1Integer: signed 32 bits [-2147483648,2147483647] {SAIL220}.
[ITS 4.7.3.2.12.3, EJ]

SW-HIR-147C

4.2.9.4 Float: 64 bits_{SAIL230}.
[ITs 4.7.3.2.12.3, EJ]

4.2.9.5 Logical:_{SAIL240}.
[ITS 4.7.3.2.12.3, EJI]

4.2.9.6 Arrays - up to 2 dimensional, of any type, with a total
allocation of up to 65536 bytes SAIL250}.
[ITS 4.7.3.2.12.3, EJ}

4.2.9.7 Multiple types - where appropriate, certain areas of telemetry buffers
and elsewhere must be accessible either as individual elements with associated
mnemonics, or as elements of arrays of appropriate types (often 2 byte integer
for 16 bit measurements). This must include the control variables used for
ground communication {SAIL260}.

[ITs 4.7.3.2.12.3,EJ]

4.2.9.8. User access to pointers is prohibited ({SAIL270}.
[ET]

4.2.10 Control structures.
The following control structures must be provided:

4.2.10.1 Conditionals. A single IF-ELSE structure must be provided.
Conditional structures must be able to be nested_{SAIL280}.
[ET]

4.2.10.2 Loops. A single looping structure, with appropriate loop counter
testing, must be provided. Loops must be able to be nested (SAIL290}.
[EJ}]

4.2.10.3 Jump. A jump to label command must be provided.

The compiler must not allow the target of a jump command to be

a) outside the same subprogram module

b) in an unrelated SAIL loop structure (4.2.10.2)

c) in a lower level SAIL loop structure nested within a SAIL loop structure
d) in a lower level conditional structure (4.2.10.1)

e) in another section of a current or higher level conditional structure
{SAIL300}

[EJ]

4.2.10.4 Subprograms. The SAIL must implement subprograms {SAIL310}. Arguments
to subroutines may be passed by reference or value, except in the case of
arrays which must be passed by reference only. The subprogram may, but is not
required to, return a value of a valid SAIL data-type [see section 4.2.9]. The
language must allow the compiler to check parameter conformance between
subprogram calls and declarations {SAIL320}. Recursion must not be allowed.
i.e. a subprogram must not be able to call itself directly or indirectly
{SAIL330}.

[EJ]

4.2.10.5 A command must be implemented to suspend execution of a task until
the next nth clock period {SAIL340}. See 4.3.3
{ITs 4.7.3.2.12.4]

SW-HIR-147C

4.2.11 Operators

The following operators must be provided for all appropriate variable types.
Using operators on inappropriate variable types must result in a compiler
error.

4.2.11.1 Assignment (all types) {SAIL350}.
[EJ]

4.2.11.2 Arithmetic: add, subtract, multiply, divide, modulo (real, integer,
unsigned and byte data types).
The result of i/j where i and j are integers and j is zero must be flagged as
an error.
The result of a/b where a and b are reals and b is zero must be flagged as an
error.
The modulo operator (%) is such that
asb = (ABS(a) - ABS(b)*INT(a/b))*SIGN(a)*SIGN(b)
where ABS(x) is the absolute value of x
INT(x) is the largest integer less than or equal to x
SIGN(x) is -1 is x is negative, otherwise +1.
The result of a%b when b is zero must be flagged as an error.
{SAIL360}
[ITS 4.7.3.2.12.3, EJ]

4.2.11.3 Bit manipulation: shift, and, inclusive or, exclusive or
(integer,unsigned and byte types) {SAIL370}.
[EJ]

4.2.11.4 Logical combination: and, inclusive or, not (logical types only)
{SATL380}.
[ET]

4.2.11.5 Relational operators:

equality compare, inequality compare (all data types except array) less than,
greater than, less than or equal to, greater than or equal to (all data types
except logical and array). Result of any of these operations is a logical.
{SAIL390}

[EJ]

4.2.12 Maths functions

The following library functions must be supported: sine, cosine, exponential,
square root, natural logarithm, inverse sine, inverse cosine, inverse tangent

(double argument). These functions must be provided for real data types only.
Also an absolute value function for both real and integer types is required.
{SAIL400}

[BEJ]

4.2.13 Expressions.
Expressions in SAIL must obey the following requirements:
4.2.13.1 Expressions must be evaluated according to a predefined operator

precedence {SAIL410}.
[ET]

SW-HIR-147C

4.2.13.2 Evaluation of expressions involving operators of equal precedence
must follow a predefined set of rules (SAIL420}.
[EJ]

4.2.13.3 Brackets must be provided to permit overriding of the predefined
operator precedence {SAIL430}.
[ET)

4.2.13.4 Mixed type expressions must be evaluated according to a predefined
set of rules {SAIL440}.
[EJ]

4.2.13.5 Expressions which result in an underflow must produce a zero result,
and should not be flagged as an error {SAIL450}.
[EJ]

4.2.13.6 Expressions which result in a divide-by-zero or an overflow in
operation must be flagged as an error {SAIL460}.
[ET]

4.2.14 The SAIL must be fully documented in a stand-alone document (SAIL High
Level Specification Document) such that fully operational SAIL programs can be
written based only on the information within that document {SAIL465}.

[ET]

4.2.15 A SAIL task must be able to ascertain the time in milliseecondschopper
rotatieons

remaining before the end of the current SAIL clock period (approximately 1
second)_{SAIL470}.

[ET]

4.3 SAIL executive and task control.

The SAIL executive shall implement a set of tasks, up to 16 of which may be
active at one time, and each of which must consist of a sequence of
instructions. By appropriate use of task suspension instructions, all the
active tasks may be serviced within a single clock period (approximately 1
second). The executive must obey the following requirements:

4.3.1 The SAIL must be able to accommodate up to 16 tasks {SAIL480}.
[ET]

4.3.2 The SAIL must be able to complete servicing of all tasks every clock
period (approximately 1 second) in a repeatable time-ordered way_ {SAIL490}.
[ITs 4.7.3.2.12.4,EJ]

4.3.3 To achieve quasi-parallel execution, each task is responsible for
suspension of its operation each clock period. At the end of a clock period if
the servicing of any active task remains uncompleted then the active task and
all unserviced tasks must be suspended and the event must be flagged in the
housekeeping data stream. Fully-serviced tasks should continue to run
{SAIL510}.

[EJ]

SW-HIR-147C

4.3.4 The SAIL must dedicate a {+EBb-¥bytei—region of memory for communication
between tasks and for two-way communication of parameters with external
environments such as ground command and data upload. All locations in this
dedicated region must have write access from the ground and must be capable of
inclusion in the telemetry stream.

Each of the 16 SAIL tasks must be allocated a section of memory which it alone
may write but which may be read by all tasks. These sections will need to be
included in the telemetry stream at all times.

A further section must be allocated for read and write access by all tasks.
The remainder of the region must have read-only access by all tasks—, except
for the HIR_SAI_SETPARAM command which any task shall be allowed to send to any
other task. {SAILS520} [ITS 4.7.3.2.12.3]

4.3.5 The operation and control of the executive must be documented as part of
the documentation describing how to upload and install a SAIL task {SAILS524}.
[EJ]

4.4 SAIL memory requirements.

4.4.1 Each task may be restricted to a (compiled) program memory space of
65536 bytes {SAIL540}.
[ET]

4.4.2 Each task may be restricted to a (compiled) variable memory space of
65536 bytes {SAIL550}.
[ET]

4.4.3 Memory allocations must be made at task staxrt—upcreation only. Running
tasks must not be able to change memory allocations {SAIL560}.
[EJ]

4.4.4 Memory protection between tasks is required, that is sections of memory
must be reserved for write access exclusively by each task {SAILS70}.
[EJ] —_—

4.4.5 The SAIL must have the capability to store spare (non-active) tasks
pending future use {SAILS580}.
[EJ]

4.4.6. A function must be provided to allow SAIL to read any word of the IPU
memory {SAIL590}. (This requirement does not include memory-mapped devices.)
[EJ MV-LOC-144]

4.5 SAIL command and data interface.

4.5.1 SAIL must provide sufficient information (task size etc) for memory
management functions to be performed on the Instrument Support Terminal (IST).
Such information should be embedded in the "micro-load®" file to be up-linked
to the IPU_ {SAILS595}.

[ITS 3.10.2.5, ITS 4.7.3.2.13, ITS 4.7.3.2.14]

4.5.2 Ground commands must be provided to permit the starting and stopping of
tasks. The task start procedure will need to specify the task identifier

SW-HIR-147C

and necessary memory locations (code and data). The task stop procedure will
specify the task identifier only. Facility must also be provided to resume a
task without re-initializing the data area ({SAIL600}.

[ITS 4.7.3.2.12.3, EJ]

4.5.3 The only means of starting a task must be by ground command. A task may
be suspended or killed by ground command. A task may suspend, but not kill, any
other task {SAIL610}. A task may also kill itself ({SATIL620}.

[ITSs 4.7.3.2.12.3, EJ)

4.5.4 The SaIl—mast—uge .} Jecuim P S SV 2 Fey Voo dioe oF e
.o, TheSAH—must—use ksum—or—simitar procodure—for—deading—odt-pew

{3302 -—5—EPE5—d-—F-3-23—13}Deleted

4.5.5 The SAIL system must distinguish between, and permit the use of, data
files for upload which contain complete tasks, and those which contain data
tables only for use by existing tasks {SAIL640}.

[EJ]

5. Requirements Traceability Matrix

SAIL # Short description Origin

4.1.1 SAIL controls mechanisms ITs 4.7.3.2.12.3
4.1.1 Provide protection and override ITS 4.7.3.2.12.3
4.1.3 SAIL writes to housekeeping data stream ITs 4.7.3.2.12.3
4.1.4 SAIL writes to diagnostic ports ITS 4.7.3.2.12.3
4.1.5 SAIL reads all data buffers ITS 4.7.3.2.12.2
4.1.6 SAIL accesses telemetry timing information ITs 4.7.3.2.12.3
4.1.6 SAIL accesses spacecraft real-time commands ITs 4.7.3.2.12.5
4.1.7 Mnemonic access to all input to IPS ITSs 4.7.3.2.12.3
4rd§ Macmopi-e—aceest—o—eommand—protection IR 24 33
4.2.1 Simple language ITs 4.7.1.1
4.2.2 Extensive comments EJ

4.2.3 SAIL Compiler and assembler language ITSs 3.10.1

4.2.4 Non-optimizing compiler EJ

4.2.5 Telemetry mnemonics in redefinable table ITS 4.7.4

4.2.6 All variables declared before use EJ

4.2.7 No dynamic memory allocation EJ

4.2.8 No multiple assignments EJ

4.2.9.1 Byte data type ITS 4.7.3.2.12.3
4.2.9.2 Unsigned data type ITS 4.7.3.2.12.3
4.2.9.3 Integer data type ITS 4.7.3.2.12.3
4.2.9.4 Float data type ITs 4.7.3.2.12.3
4.2.9.5 Logical data type ITS 4.7.3.2.12.3
4.2.9.6 Array data ITS 4.7.3.2.12.3
4.2.9.7 Multiple (overloading) types ITS 4.7.3.2.12.3
4.2.9.8 Pointer access prohibited EJ

4.2.10.1 sSingle IF ... ELSE structure EJ

4.2.10.2 Single loop structure EJ

4.2.10.3 Jump to label EJ

4.2.10.4 Subprograms Implemented EJ

SW-HIR-147C

4.2.10.4 Subprogram parameter conformance EJ
4.2.10.4 Prohibit recursion EJ
4.2.10.5 sSuspend till next frame command ITS 4.7.3.2.12.4
4.2.11.1 Assignment operator EJ
4.2.11.2 Arithmetic operators ITS 4.7.3.2.12.3
4.2.11.3 Bit manipulation EJ
4.2.11.4 Logical combination EJ
4.2.11.5 Relational operators " EJ
4.2.12 Maths functions EJ
4.2.13.1 Defined operator precedence EJ
4.2.13.2 Defined expression evaluation EJ
4.2.13.3 Brackets to override operator precedence EJ
4.2.13.4 Evaluation of mixed type expressions EJ
4.2.13.5 Treat underflow as zero EJ
4.2.13.6 Flag overflow EJ
4.2.14 SAIL High Level Specification Document EJ
4.2.15 Access to clock information EJ
4.3.1 Up to 16 tasks EJ
4.3.2 All tasks/clock period ITS 4.7.3.2.12.4
4.3.3 Task over-run EJ
4.3.4 Inter-task communication ITs 4.7.3.2.12.3
4.3.5 Executive documentation EJ
4.4.1 SAIL code < 65536 bytes EJ
4.4.2 SAIL variables < 65536 bytes EJ
4.4.3 Memory allocation EJ
4.4.4 Memory protection EJ
4.4.5 Spare task storage EJ
4.5.1 SAIL provides memory management data ITS 4.7.3.2.14
4.5.2 Starting and stopping tasks from ground ITS 4.7.3.2.12.3
4.5.3 Stopping tasks from SAIL ITS 4.7.3.2.12.3
45l precedure IPS—3 3025
3 O o .—'."‘._
4.5.5 Complete tasks and data tables EJ
6. List of Acronyms
AMPTE Active Magnetospheric Particle Tracers Experiment
CCE Charge Composition Explorer spacecraft
HPCE Lockheed Hot Plasma Composition Explorer
CSSs Cooler Subsystem
EJ Engineering Judgement
FSS Flight software simulator
GGS Global Geospace Science Mission
GSS Gyro Subsystem
HIRDLS High Resolution Dynamics Limb Sounder
HPCE Lockheed Hot Plasma Composition Explorer instrument
ISAMS Improved Stratospheric and Mesospheric Sounder
LMPARL Lockheed Martin Palo Alto Research Laboratory
ICD Interface Control Document
ICP Instrument Control Parameter
IFC In-Flight Calibration Subsystem
IPS Instrument Processor Subsystem
IPU Instrument Processor Unit

10

SW-HIR-147C

IST Instrument Support Terminal

ITS Instrument Technical Specification

I&T Integration and Test

PCL Program Control Language

PSS Power Subsystem

SAIL Science Algorithm Implementation Language
SPU Signal Processing Unit

SRD Science Regquirements Document

TSS Telescope Subsystem

TIMAS Toroidal Imaging Mass-Angle Spectrograph

11

